Separation of transition metals and chelated complexes in wastewaters
Environmental Progress and Sustainable Energy, ISSN: 1944-7450, Vol: 34, Issue: 3, Page: 761-783
2015
- 19Citations
- 28Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
This review responds to the ongoing needs of wastewater engineers tasked with treating aqueous solutions containing chelated complexes of metal ions, of which nickel citrate in electrodeless plating and copper-EDTA in electronic chip board manufacturing are two key examples. Because of the presence of these sequestering agents, metallic ions cannot be readily precipitated by alkalinity, making a compelling case for the discovery of alternative methods of treatment. This review is a critical appraisal of the varying degrees of success in separation process strategies deployed for the recovery of metallic ions under such challenging chemical conditions. Guidance is provided on making progress toward satisfactory industrial solutions to surmount these difficulties.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know