Exergy-based performance indicators for industrial practice
International Journal of Energy Research, ISSN: 1099-114X, Vol: 42, Issue: 13, Page: 3989-4007
2018
- 18Citations
- 35Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Review Description
Key performance indicators (KPIs) are powerful tools that industries can use not only to monitor their activities but also to highlight their unexploited potential. Energy-based KPIs are nowadays mostly used to evaluate industrial process performances. However, these indicators might present some limitations and might give misleading results in some circumstances. An example is represented by industrial processes that make use of different energy forms (eg, electricity and heat) and of different material inputs, and that are therefore difficult to compare in terms of energy. A further example can be found in the Carnot engine that, despite being ideal, can have quite low energy efficiency (eg, the energy efficiency of a Carnot engine working between 700 and 300 K is 57%), suggesting that its performance can be improved. The use of exergy-based KPIs allows us to overcome many of the limitations of energy-based indicators. The exergy efficiency of Carnot engines is 100%, clearly indicating that the system cannot be further improved. Moreover, the use of specific exergy consumption instead of specific energy consumption to monitor the performance of a process allows one to take into account possible differences in quality of material and energy streams. In the present work, exergy-based KPIs for industrial use are reviewed. The paper outlines advantages and limitations of the reviewed indicators, with the scope of promoting their use in industry. A systematic use of exergy-based KPIs not only gives a meaningful representation of process performances in terms of resource use but it can also direct efforts to improve the processes. To better understand their meaning under different circumstances, the revised indicators are applied to 3 industrial processes.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know