Ultimate and Primary Biodegradation of a Range of Nonpolymeric and Polymeric Surfactants in Seawater
Environmental Toxicology and Chemistry, ISSN: 1552-8618, Vol: 42, Issue: 7, Page: 1472-1484
2023
- 4Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Captures4
- Readers4
Article Description
Surfactants are chemicals commonly used in a wide range of domestic and industrial products. In the present study, ultimate biodegradation of 18 surfactants representing different classes (including several polymeric alcohol ethoxylates [AEs]) was determined in seawater at 20 °C by a Closed Bottle test method. After 28 days of incubation, 12 surfactants reached 60% biodegradation and were considered to be readily biodegradable in seawater. The results for the six additional surfactants indicated that the 60% pass level may be reached by extended incubation time, or that reduced biodegradation could be associated with toxicity of the chemicals. All these six surfactants were biodegraded >20% after 28 days, indicative of primary biodegradation in seawater. Polymeric ethoxylates with high numbers of ethylene oxide (EO) groups (40–50 EO groups) were more slowly biodegraded than polyethoxylates with 4 to 23 EO groups. Biodegradation experiments of the AE C12 EO9 (3 to 18 EO groups) in a carousel system at 20 °C with natural seawater and a surfactant concentration of 500 µg/L showed rapid primary biodegradation by targeted analyses of the AE, with >99% primary biodegradation after 2 days of incubation. The surfactant depletion coincided with temporary formation of polyethylene glycols, suggesting that central fission is an important degradation step in seawater. A primary biodegradation experiment in the carousel system with C12 EO9 was conducted in the presence of suspended particulate materials (SPMs; marine phytoplankton and clay particles), showing that the presence of SPMs did not hamper the primary biodegradation of the surfactant. Separation of fractions in 20-µm steel filters indicated some particle association of the surfactant. Environ Toxicol Chem 2023;42:1472–1484. © 2023 SETAC.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know