Facies analysis and distribution of Late Palaeogene deep-water massive sandstones in submarine-fan lobes, NW Borneo
Geological Journal, ISSN: 1099-1034, Vol: 57, Issue: 11, Page: 4489-4507
2022
- 13Citations
- 7Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Deep-water massive sandstones (DWMS) are characterized by large volumes of sand accumulations which are considered as potential reservoir intervals in deep-marine environments. Lithological variations and bed thickness statistics are used to interpret the distribution of massive sandstones in a deep-marine fan-lobe system. These massive sandstones are interpreted based on lithological heterogeneities and detailed facies analysis in seventeen exposed sections of the Late Palaeogene deposits in Sabah, NW Borneo. Sedimentary logs containing details of lithology textures and structures were used to recognize nine sedimentary facies of DWMS. These lithofacies were then grouped into three sedimentary facies associations: (1) massive facies association with basal part of turbiditic Bouma sequence, (2) massive facies association having soft-sediment deformation structures, and (3) massive facies association with erosional features. The facies analysis portrays inner to middle submarine fan deposition and was later applied to reconstruct the distribution of a channel-lobe complex. Individual sandstone bed thicknesses vary from 1 m to more than 8 m and the number of massive sandstones in submarine lobes range from less than 10% to more than 50%. The thicknesses of massive sandstones in channels are more than 8 m, whereas distal lobes have thicknesses from 1–2 m only. These sandstones are concentrated in channels, proximal and medial lobe settings that can also be verified from calculating the average of all maximum thickness of massive sand intervals that is, 8.91 m. The lithological heterogeneities and the processes associated with the deposition of these massive sandstones are vital for potential hydrocarbon reservoirs in the deep-marine environments around the globe.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know