PKC activation rescues LTP from NMDA receptor blockade: PKC Activation Rescues LTP
Hippocampus, ISSN: 1050-9631, Vol: 11, Issue: 2, Page: 168-175
2001
- 36Citations
- 15Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations36
- Citation Indexes36
- 36
- CrossRef29
- Captures15
- Readers15
- 15
Article Description
It has been proposed that a critical step in long-term potentiation (LTP) expression is the activation of presynaptic protein kinase C (PKC) after activation of postsynaptic NMDA receptors. A prediction from this "synaptic dialogue" hypothesis (Routtenberg, Trends Neurosci 1999;22:255-256) is that the well-known blockade of LTP by NMDA receptor antagonists would be rescued by direct activation of PKC. To test this prediction we recorded extracellular EPSPs in the molecular layer of the dentate gyrus (DG) in the intact, anesthetized mouse after stimulation of the perforant path. Three experimental series were performed in which tetanization was applied after continuous infusion of 1) vehicle, 2) NMDA receptor antagonist dl-2-amino-5-phosphonovaleric acid (APV) (2.5 ± 1.0 nmol), or 3) both APV and then PKC activator 4-beta-phorbol-12, 13-dibutyrate (PDBu, 9.0 ± 1.0 pmol). LTP was reliably induced in the first series (124 ± 5%, N = 6; 2.5 h after the tetanus), suppressed by APV in the second series (95 ± 18%, N = 4), and restored in the third series (121 ± 13%, N = 5). Decreased paired-pulse facilitation, an index of presynaptic involvement in LTP expression, was observed after tetanization in the first and third series, but not in the second series. Blockade of LTP by NMDA receptor antagonists that can be overridden by presynaptic activation of PKC is thus consistent with the proposed hypothesis. As LTP is rescued after NMDA receptor blockade in transgenic mice overexpressing growth-associated presynaptic protein GAP-43, we suppose that this protein is one of the presynaptic targets of PKC activation.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know