Definitive endoderm differentiation of human-induced pluripotent stem cells using signaling molecules and IDE1 in three-dimensional polymer scaffold
Journal of Biomedical Materials Research - Part A, ISSN: 1552-4965, Vol: 102, Issue: 11, Page: 4027-4036
2014
- 37Citations
- 48Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations37
- Citation Indexes37
- 37
- CrossRef24
- Captures48
- Readers48
- 48
Article Description
Human-induced pluripotent stem cells (hiPSCs) are considered to be potentially able to differentiate into all human cell lineages and thus hold promise as an unlimited source for cell replacement therapies in clinical applications. Definitive endoderm (DE) formation is the first and crucial step in the development of visceral organs such as liver, lung, pancreas and so forth. Therefore, efficient generation of DE cells ensures the efficient generation of eventual target cells used in cell therapy. In the present study, Matrigelcoated poly(lactic acid)/gelatin (PLA/gelatin) nanofibrous scaffolds were utilized to investigate the proliferation and differentiation of hiPSCs into DE cells. Analyses of DE-specific markers including Sox17, FoxA2, and Gooscoid (Gsc) genes revealed higher levels of mRNA and protein expression in the differentiated hiPSCs cells cultured on PLA/gelatin scaffolds than cells differentiated in two-dimensional (2D) culture. Our results showed that three-dimensional (3D) cultures could significantly promote DE differentiation in comparison with 2D culture. Also using small molecules such as inducer of definitive endoderm 1 (IDE1) and signaling molecules such as Activin A and Wnt3a could enhance the DE differentiation of hiPSCs with Activin A/Wnt3a being significantly more potent in both 2D and 3D cultures compared to IDE1. The results of this study may have impact in tissue engineering and cell replacement therapy of visceral organs-related diseases.
Bibliographic Details
Wiley
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know