Quantitative and qualitative toxicological evaluation of thiol-ene “click” chemistry-based polyanhydrides and their degradation products
Journal of Biomedical Materials Research - Part A, ISSN: 1552-4965, Vol: 104, Issue: 8, Page: 1936-1945
2016
- 10Citations
- 9Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations10
- Citation Indexes10
- 10
- CrossRef9
- Captures9
- Readers9
Article Description
Quantitative and qualitative toxicological analyses of crosslinked, surface-eroding polyanhydrides (PAHs) made from thiol-ene “click” polymerizations are reported. The cytotoxicity of these PAHs was investigated against three skin-based cell types; melanoma (A-375), human dermal fibroblast adult (HDFa), and 3T3-J2 (mouse fibroblast) cells, thus providing insight into the potential for these PAHs to be used in dermal drug delivery applications. Apoptosis was evaluated quantitatively and qualitatively using MTT assay and fluorescence microscopic imaging as indication of cytotoxicity. Upon exposure of A-375 and HDFa cells to high concentrations (4000 mg/L) of crosslinked PAH, the respective morphologies remained relatively unchanged compared with nonexposed cells. The 3T3-J2 cell type was more sensitive towards the PAH, exhibiting minimal deformation of cell morphology at 4000 mg/L. The MTT assay and fluorescence imaging revealed that this PAH and its degradation products are highly cytocompatible at high concentrations and cytotoxicity observed is dosage/time dependent. Further, the PAH did not induce inhibition of tested cells’ proliferation at high polymer concentration up to 2000 mg/L. The IC (concentration of the crosslinked PAH required to inhibit 50% cell viability) for HDFa and A-375 cells was determined to be 4300 ± 70 and 8500 ± 50 mg/L, respectively. The high cytocompatibility of this type of crosslinked PAH, in addition to their degradation products, towards these skin cells (standard and cancer cell types) suggests that the polymer may be viable for dermal-based drug delivery to normal and cancerous diseased tissues. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 1936–1945, 2016.
Bibliographic Details
Wiley
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know