Growth of river mouth bars in sheltered bays in the presence of frontal waves
Journal of Geophysical Research: Earth Surface, ISSN: 2169-9011, Vol: 118, Issue: 2, Page: 872-886
2013
- 60Citations
- 62Captures
- 1Mentions
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
One of the key processes for the formation of deltas and their fluvial networks is the deposition of mouth bars in front of prograding distributaries. Waves influence mouth bar growth, but it is not clear how and to what extent. Toward this end, we conduct a modeling study on deltas forming in sheltered bays, where waves are locally generated and both longshore currents and surf zone are absent. We focus on the simplified case of a homopycnal river plume subject to frontal wave attack, and we begin by isolating the effects of waves on jet spreading. An analytical model for the hydrodynamic interaction between incoming waves and a turbulent expanding jet is developed and tested with the numerical model Delft3D coupled to the wave model SWAN. Both the analytical model and Delft3D predict that incoming surface gravity waves increase the spreading of the jet and the interaction between wave and current boundary layers causes an increase in bottom friction. To investigate how waves influence mouth bar morphodynamics, a set of numerical simulations is run with Delft3D-SWAN utilizing a geometry and wave characteristics typical of sheltered bays. Our numerical results show that in the presence of waves, mouth bars form up to 35% closer to the river mouth and 40% faster when compared to cases without waves. The distance from the river mouth to the stagnated mouth bar decreases with increasing wave height and wave period. The timescale of bar formation is inversely proportional to wave height and directly proportional to wave period. Our modeling study suggests that wave influence on mouth bar growth is complex. Small waves, like the ones modeled here, promote mouth bar formation via increased jet spreading and faster formation time, which in turn should create deltas with more distributary channels. On the other hand, large waves suppress mouth bar formation, as seen in other studies, leading to fewer distributary channels. Key Points Waves increase the expansion of the river-mouth jet by enhancing bed friction In presence of waves the bar forms at a shorter distance from river mouth Mouth bars form faster when waves are present ©2013. American Geophysical Union. All Rights Reserved.
Bibliographic Details
American Geophysical Union (AGU)
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know