Modulation of phagocytosis-induced cell death of human neutrophils by Neisseria gonorrhoeae
Journal of Leukocyte Biology, ISSN: 1938-3673, Vol: 108, Issue: 5, Page: 1543-1553
2020
- 7Citations
- 7Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations7
- Citation Indexes7
- CrossRef5
- Captures7
- Readers7
Article Description
Optimal innate immune response to infection includes eradication of potential pathogens, resolution of associated inflammation, and restitution of homeostasis. Phagocytosing human polymorphonuclear leukocytes (hPMN) undergo accelerated apoptosis, a process referred to as phagocytosis-induced cell death (PICD) and an early step in their clearance from inflammatory sites. Among human pathogens that modulate hPMN apoptosis, Neisseria gonorrhoeae delays PICD, which may contribute to the exuberant neutrophilic inflammation that characterizes gonorrhea. To elucidate the mechanisms underlying delayed PICD, we compared features of hPMN cell death that followed phagocytosis of N. gonorrhoeae FA1090 wild-type (GC) or serum-opsonized zymosan (OPZ), a prototypical stimulus of PICD. Phosphatidylserine externalization required NADPH oxidase activity after ingestion of GC or OPZ, and annexin V staining and DNA fragmentation were less after phagocytosis of GC compared to OPZ. Caspase 3/7 and caspase 9 activities after phagocytosis of GC were less than that seen after ingestion of OPZ, but caspase 8 activity was the same after ingestion of GC or OPZ. When hPMN sequentially ingested GC followed by OPZ, both caspase 3/7 and 9 activities were less than that seen after OPZ alone, and the inhibition was dose dependent for GC, suggesting that ingestion of GC actively inhibited PICD. Sequential phagocytosis did not block caspase 8 activity, mitochondrial depolarization, or annexin V/propidium iodide staining compared to responses of hPMN fed OPZ alone, despite inhibition of caspases 3/7 and 9. Taken together, these data suggest that active inhibition of the intrinsic pathway of apoptosis contributes to the delay in PICD after hPMN ingestion of N. gonorrhoeae.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85091452763&origin=inward; http://dx.doi.org/10.1002/jlb.4ma0820-649r; http://www.ncbi.nlm.nih.gov/pubmed/32977356; https://academic.oup.com/jleukbio/article/108/5/1543/6884419; https://dx.doi.org/10.1002/jlb.4ma0820-649r; https://academic.oup.com/jleukbio/article-abstract/108/5/1543/6884419?redirectedFrom=fulltext
Oxford University Press (OUP)
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know