Multiplexed Generation of Generalized Vortex Beams with On-Demand Intensity Profiles Based on Metasurfaces
Laser and Photonics Reviews, ISSN: 1863-8899, Vol: 16, Issue: 3
2022
- 38Citations
- 18Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Optical vortex beams (VB) have provided a new degree of freedom for carrying optical information due to the unbounded number of orthogonal orbital angular momentum (OAM) channels. Due to the presence of phase singularity, VBs possess a dark zone in the center surrounded by a bright ring whose radius is directly related to the OAM carried by the beam. Here multiplexed generalized vortex beams (GVB) are demonstrated with various custom-defined closed-loop beam profiles, including polygons, star and windmill, by tailoring the local phase gradient along the azimuthal direction. By utilizing different polarization channels of metasurfaces, multiple GVBs with independent intensity profiles are generated. This approach provides a playground for realizing various optical modulating capabilities, such as precise particle manipulation, optical source, and OAM encryption.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know