Potential of Mean Force of Short-Chain Surface Adsorption using Non-Uniform Sampling Windows for Optimal Computational Efficiency
Macromolecular Theory and Simulations, ISSN: 1521-3919, Vol: 33, Issue: 1
2024
- 1Citations
- 3Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Free energy calculation in molecular simulation is an computationally expensive process. Umbrella sampling (US) is a go-to method for obtaining the potential of mean force (PMF) along a reaction coordinate. Its computational cost increases drastically as the molecular system gets more complex. For many polymeric and biomolecular systems, adequately sampling all configurational degrees of freedom is computationally prohibitive. Using the adsorption of a short-chain methylcellulose on a cellulose crystalline surface as the test case, this study shows that the sampling time required for reliable results is much higher than typical choices made in the literature. The accuracy of the PMF profile is strongly affected by sampling inadequacy in a few regions along the reaction coordinate. Non-uniform windows and sampling parameters are proposed to enhance the sampling in difficult regions. Sampling windows that vary with the local PMF steepness are allocated with a new algorithm. Parameters in this algorithm are optimized for the best sampling efficiency. It is demonstrated that significantly less computer time will be required to achieve the same sampling accuracy if computational resources are optimally distributed along the reaction coordinate.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know