Fracture modeling using meshless methods and level sets in 3D: Framework and modeling
International Journal for Numerical Methods in Engineering, ISSN: 0029-5981, Vol: 92, Issue: 11, Page: 969-998
2012
- 294Citations
- 63Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
In 3D fracture modeling, the complexity of the evolving crack geometry during propagation raises challenges in stress analysis because the accuracy of results mainly relies on the accurate description of the crack geometry. In this paper, a numerical framework is developed for 3D fracture modeling where a meshless method, the element-free Galerkin method, is used for stress analysis and level sets are used accurately to describe and capture crack evolution. In this framework, a simple and general formulation for associating the displacement jump in the field approximation with an arbitrary 3D curved crack surface is proposed. For accurate closure of the crack front, a tying procedure is extended to 3D from its original use in 2D in the previous paper by the authors. The benefits of level sets in improving the results accuracy and reducing the computational cost are explored, particularly in the model refinement and the confinement of the displacement jump. Issues arising in level sets updating are discussed and solutions proposed accordingly. The developed framework is validated with a number of 3D crack examples with reference solutions and shows strong potential for general 3D fracture modeling. © 2012 John Wiley & Sons, Ltd.
Bibliographic Details
Wiley
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know