Hierarchical model reduction for incompressible fluids in pipes
International Journal for Numerical Methods in Engineering, ISSN: 1097-0207, Vol: 114, Issue: 5, Page: 469-500
2018
- 15Citations
- 10Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Hierarchical model reduction is intended to solve efficiently partial differential equations in domains with a geometrically dominant direction. In many engineering applications, these problems are often reduced to 1-dimensional differential systems. This guarantees computational efficiency yet dumps local accuracy as nonaxial dynamics are dropped. Hierarchical model reduction recovers the secondary components of the dynamics of interest with a combination of different discretization techniques, following up a natural separation of variables. The dominant direction is generally solved by the finite element method or isogeometric analysis to guarantee flexibility, while the transverse components are solved by spectral methods, to guarantee a small number of degrees of freedom. By judiciously selecting the number of transverse modes, the method has been proven to improve significantly the accuracy of purely 1-dimensional solvers, with great computational efficiency. A Cartesian framework has been used so far both in slab domains and cylindrical pipes (including arteries) mapped to Cartesian reference domains. In this paper, we investigate the alternative use of a polar coordinates system for the transverse dynamics in circular or elliptical pipes. This seems a natural choice for applications like computational hemodynamics. In spite of this, the selection of a basis function set for the transverse dynamics is troublesome. As pointed out in the literature—even for simple elliptical problems—there is no “best” basis available. In this paper, we perform an extensive investigation of hierarchical model reduction in polar coordinates to discuss different possible choices for the transverse basis, pointing out pros and cons of the polar coordinate system.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know