A Facile Method to Incorporate Di-Dopant Elements (F and Sb) into Crystalline Mesoporous Tin Dioxide Nano Powder at Ambient Temperature and Pressure
ChemistryOpen, ISSN: 2191-1363, Vol: 14, Issue: 1, Page: e202400096
2025
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
A simple two step synthetic method for di-doped crystalline mesoporous tin dioxide powder containing antimony and fluoride at ambient pressure and temperature has been developed. This approach produced materials with high surface areas and improved electrical and optoelectrical conductance. The two dopant elements; antimony and fluoride were introduced to tin dioxide by two approaches. Both approaches produced mesoporous tin dioxide with antimony and fluoride that are integrated in the framework. The structures of these materials are analyzed by powder X-ray diffraction, N sorption analysis, transmission electron microscopy, energy dispersive X-ray spectroscopy and X-ray photoelectron spectroscopy. The conductance of the materials improved by factor of 13–34 compared to undoped mesoporous tin dioxide. The effect of the di-doped elements on structure, conductance and optoelectronic properties of these materials are discussed in this paper.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know