Friction-wear performance in environmentally friendly brake composites: A comparison of two different test methods
Polymer Composites, ISSN: 1548-0569, Vol: 42, Issue: 9, Page: 4461-4477
2021
- 24Citations
- 28Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
In this study, an eco-friendly brake composite sample (EFP) was produced with 3.5% hazelnut shell dust as a natural additive material. Friction tests were performed on the manufactured pad sample and on a commercial pad (CP) using both a Chase-type test machine and a specially designed device. A different approach is presented with the evaluation of the two different test device results. The experimental results were compared using the Taguchi method and it was concluded that the braking performance of the sample with hazelnut shell dust was in accordance with international standards. As a result of the study; the nominal friction coefficient value was found to be 0.505 μ. The shearing force of the EFP and CP samples was measured at 607.3 and 850.5 N, respectively. The friction coefficient values obtained from the EFP and CP samples were in accordance with the SAE J-661 standard and are in the “F” letter class.
Bibliographic Details
Wiley
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know