Development of Polyurethane-Based Solid Propellants Using Nanocomposite Materials
Propellants, Explosives, Pyrotechnics, ISSN: 1521-4087, Vol: 41, Issue: 2, Page: 286-294
2016
- 16Citations
- 17Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Mechanically-activated nanocomposites (MANCs) of nano-aluminum (nAl)/X (X=Cu, Ni, Zn, Mg, and graphite) were used as replacements for reference nAl powder and as catalytic ingredients in polyurethane (PU) propellants. The effects of their use on combustion heat, burning rate, and thermal decomposition were investigated. It was found that MANCs have catalytic effects and the modified propellants have enhanced the released heat, burning rate, and thermal decomposition properties. MANCs-based propellants have improved the processing and the mechanical properties with acceptable safety aspects. They can be used for catalytic applications in solid propellants to improve their energetic, burning rate, and thermal decomposition characteristics.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know