Nickel Vanadate Cathode Induced In Situ Phase Transition for Improved Zinc Storage by Low Migration Barrier and Zn/H Co-Insertion Mechanism
Small, ISSN: 1613-6829, Vol: 21, Issue: 2, Page: e2408568
2025
- 1Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Captures1
- Readers1
Article Description
Designing cathode materials that exhibit excellent rate performance and extended cycle life is crucial for the commercial viability of aqueous zinc (Zn)-ion batteries (ZIBs). This report presents a hydrothermal synthesis of stable NiVO·1.22HO (NVOH) cathode material, demonstrating high-rate performance and extended cycle life. A successful in situ phase transformation yields Zn(OH)VO·nHO (ZVO), which undergoes an irreversible phase transition and exhibits exceptional energy storage properties. The procedure maintains the lattice structure of ZVO and ensures high structural stability throughout the phase transformation. The NVOH cathode material exhibits the discharge capacities of 399 mA h g at a rate of 1 A g after 400 cycles and 303 mA h g at 10 A g after 2000 cycles. Density functional theory calculations indicate that the material is protected by electrostatic forces and exhibits structural stability, with a Zn-ion migration barrier of 0.32 eV across the host lattice and the electrode–electrolyte interface. Due to these properties, NVOH also exhibits high energy/power densities of 395 Wh kg/406 W kg at 0.5 A g and 288 Wh kg/8830 W kg at 10 A g. Ex situ characterizations indicate structural modifications and irreversible phase changes of NVOH, highlighting the potential of H intercalation and in situ phase transitions for high-performance aqueous ZIBs.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know