Controlled Crystallization and Enhanced Performance of γ-CsPbI Perovskite Through Methylammonium Iodide-Assisted Coevaporation
Small Methods, ISSN: 2366-9608, Page: e2400796
2024
- 3Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Captures3
- Readers3
Article Description
Cesium lead triiodide (CsPbI) perovskites have garnered significant attention owing to their suitable bandgap for tandem silicon substrates and excellent chemical stability. However, γ-CsPbI prepared via low-temperature co-evaporation is limited by a narrow black phase processing window and random crystal orientation, hindering its optoelectronic performance and industrial applications. This study introduced trace amounts of methylammonium iodide (MAI) into the co-evaporation system, enhancing the crystallization process, promoting columnar grain growth, and stabilizing the γ-phase perovskite, resulting in films with improved structural integrity and reduced defect density. The optimal Pb/Cs ratio for achieving the best photoelectric performance shifted from 1:1 to 1.1:1 in the presence of MAI. Additionally, the incorporation of MAI allowed for more efficient longitudinal carrier transport, as evidenced by the enhanced photoluminescence (PL) intensity. The bandgap of CsPbI remained approximately at 1.7 eV before the δ-phase transition, ensuring suitability for photovoltaic applications. Ultimately, a photovoltaic device with 12% efficiency is achieved in the p-i-n structure without additional post-annealing of the CsPbI perovskite films, demonstrating the practical benefits of MAI incorporation.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know