Modeling of the Kinetics of Strain-Induced Martensite Transformation and the Transformation-Induced Plasticity Effect in a Lean-Alloyed Metastable Austenitic Stainless Steel
Steel Research International, ISSN: 1869-344X, Vol: 93, Issue: 5
2022
- 6Citations
- 5Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
This article investigates the influence of temperature and strain on second-phase transformation strengthening and the resulting mechanical properties in a lean AISI 301LN austenitic stainless steel within a temperature range of −60 to 180 °C. The volume fraction of martensite evolved is determined using nondestructive magnetic Ferritescope measurements that are adjusted by using a calibration factor of 1.7, which is established using the saturation magnetization measurements, X-ray, and neutron diffraction measurements. The kinetics of strain-induced martensite transformation (SIMT) as a function of strain and temperature is accurately described by a set of modified constitutive Boltzmann sigmoidal equations at temperatures below 75 °C. For this steel, the M (30/50) temperature is determined as 61 °C. The absolute M temperature is established as ≈109 °C, and no athermal transformation to martensite is observed upon cooling to −270 °C using cryogenic neutron diffraction facilities. Extended JMAK analysis of the transformation is used to shed light on the mechanism of martensitic transformation. It is found that the transformation-induced plasticity (TRIP) effect due to SIMT is at a maximum at 75 °C, which is the maximum elongation temperature (MET) and calculations are performed regarding alloy development which will reduce the MET to room temperature.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know