Enhancing angiogenesis alleviates hypoxia and improves engraftment of enteric cells in polycaprolactone scaffolds
Journal of Tissue Engineering and Regenerative Medicine, ISSN: 1932-7005, Vol: 7, Issue: 12, Page: 925-933
2013
- 7Citations
- 10Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations7
- Citation Indexes7
- CrossRef7
- Captures10
- Readers10
- 10
Article Description
We examined whether expediting angiogenesis in porous polycaprolactone (PCL) scaffolds could reduce hypoxia and consequently improve the survival of transplanted enteric cells. To accelerate angiogenesis, we delivered vascular endothelial growth factor (VEGF) using PCL scaffolds with surface crosslinked heparin. The fabrication and characterization of scaffolds has been reported in our previous study. Enteric cells, isolated from intestinal tissue of neonatal mice and expanded in vitro for 10days, exhibited high expression levels for contractile protein α-smooth muscle actin and desmin. The cultured enteric cells were seeded in scaffolds and were implanted subcutaneously in immunodeficient mice for 7 and 14days. At day 7, the heparin-modified PCL scaffolds with VEGF exhibited significantly increased angiogenesis and engraftment of enteric cells, with a simultaneous reduction in hypoxia. At day 14, the blood vessels grew across the entire thickness of the scaffold and resulted in a significantly diminished hypoxic environment; however, the transplanted cell density did not increase further. In conclusion, the enhancement of angiogenesis reduced cellular hypoxia and improved the engraftment of enteric cells. © 2012 John Wiley & Sons, Ltd.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=84888437833&origin=inward; http://dx.doi.org/10.1002/term.1484; http://www.ncbi.nlm.nih.gov/pubmed/22511397; https://onlinelibrary.wiley.com/doi/10.1002/term.1484; http://doi.wiley.com/10.1002/term.1484; http://onlinelibrary.wiley.com/doi/10.1002/term.1484/abstract
Hindawi Limited
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know