Porphyrin Biosynthesis Intermediates Are Not Regulating δ-Aminolevulinic Acid Transport in Saccharomyces cerevisiae
Biochemical and Biophysical Research Communications, ISSN: 0006-291X, Vol: 272, Issue: 3, Page: 946-950
2000
- 9Citations
- 18Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations9
- Citation Indexes9
- CrossRef9
- Captures18
- Readers18
- 18
Article Description
In Saccharomyces cerevisiae, as in all eukaryotic organisms, δ-aminolevulinic acid (ALA) is a precursor of porphyrin biosynthesis, a very finely regulated pathway. ALA enters yeast cells through the γ-aminobutyric acid (GABA) permease Uga4. The incorporation of a metabolite into the cells may be a limiting step for its intracellular metabolization. To determine the relationship between ALA transport and ALA metabolization, ALA incorporation was measured in yeast mutant strains deficient in the δ-aminolevulinic acid-synthase, uroporphyrinogen III decarboxylase, and ferrochelatase, three enzymes involved in porphyrin biosynthesis. Results presented here showed that neither intracellular ALA nor uroporphyrin or protoporphyrin regulates ALA incorporation, indicating that ALA uptake and its subsequent metabolization are not related to each other. Thus a key metabolite as it is, ALA does not have a transport system regulated according to its role.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S0006291X00928742; http://dx.doi.org/10.1006/bbrc.2000.2874; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=0342656498&origin=inward; http://www.ncbi.nlm.nih.gov/pubmed/10860855; https://linkinghub.elsevier.com/retrieve/pii/S0006291X00928742; https://dx.doi.org/10.1006/bbrc.2000.2874
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know