Massive Galaxies at Z = 2 in Cosmological Hydrodynamic Simulations
Starbursts, Page: 319-322
2005
- 2Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Captures2
- Readers2
Book Chapter Description
We study the properties of galaxies at z=2 in a Lambda cold dark matter universe, using two different types of hydrodynamic simulation methods -- Eulerian TVD and smoothed particle hydrodynamics (SPH) -- and a spectrophotometric analysis in the U_n, G, R filter set. The simulated galaxies at z=2 satisfy the color-selection criteria proposed by Adelberger et al. (2004) and Steidel et al. (2004) when we assume Calzetti extinction with E(B-V)=0.15. We find that the number density of simulated galaxies brighter than R<25.5 at z=2 is about 1e-2 h^3 Mpc^-3 for E(B-V)=0.15, which is roughly twice that of the number density found by Erb et al. (2004) for the UV bright sample. This suggests that roughly half of the massive galaxies with M*>10^{10} Msun/h at z=2 are UV bright population, and the other half is bright in the infra-red wavelengths. The most massive galaxies at z=2 have stellar masses >= 10^{11-12} Msun. They typically have been continuously forming stars with a rate exceeding 30 Msun/yr over a few Gyrs from z=10 to z=2, together with significant contribution by starbursts reaching up to 1000 Msun/yr which lie on top of the continuous component. TVD simulations indicate a more sporadic star formation history than the SPH simulations. Our results do not imply that hierarchical galaxy formation fails to account for the observed massive galaxies at z>=1. The global star formation rate density in our simulations peaks at z>=5, a much higher redshift than predicted by the semianalytic models. This star formation history suggests early build-up of the stellar mass density, and predicts that 70 (50, 30)% of the total stellar mass at z=0 had already been formed by z=1 (2, 3). Upcoming observations by Spitzer and Swift might help to better constrain the star formation history at high redshift.
Bibliographic Details
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know