Nanocellulose and proteins: Exploiting their interactions for production, immobilization, and synthesis of biocompatible materials
Advances in Polymer Science, ISSN: 0065-3195, Vol: 271, Page: 207-224
2015
- 25Citations
- 75Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Book Chapter Description
Nanocellulose has been used with promising results as reinforcement material in composites, many of which include hydrophobic polymers. However, the hydrophilic nature of nanocellulose can be better exploited in composites that incorporate high surface energy systems as well as in applications that can benefit from such properties. In fact, proteins can be ideal components in these cases. This paper reviews such aspects, which are based on the remarkable mechanical properties of nanocellulose. This material also exhibits low density, high aspect ratio, high surface area, and can be modified by substitution of its abundant hydroxyl groups. It also shows biocompatibility, low toxicity, and biodegradability. Convenient biotechnological methods for its production are of interest not only because of the possible reduction in processing energy but also because of positive environmental aspects. Thus, enzymatic treatments are favorable for effecting fiber deconstruction into nanocellulose. In addition to reviewing nanocellulose production by enzymatic routes, we discuss incorporation of enzyme activity to produce biodegradable systems for biomedical applications and food packaging. Related applications have distinctive features that take advantage of protein–cellulose interactions and the possibility of changing nanocellulose properties via enzymatic or protein treatments.
Bibliographic Details
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know