Polymer Biodegradability 2.0: A Holistic View on Polymer Biodegradation in Natural and Engineered Environments
Advances in Polymer Science, ISSN: 1436-5030, Vol: 293, Page: 65-110
2023
- 5Citations
- 36Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Book Chapter Description
Biodegradable polymers are an important part of the solution toolbox to achieve circularity in the plastic economy and overcome negative impacts of a linear plastic economy. Biodegradable polymers need to excel not only on a mechanical performance level in the application to fulfill their function during the use phase but also on a biodegradation performance level after use. The biodegradation performance is tailored to the application and the receiving environment of the polymer product after use, which can be both engineered systems (e.g., compost, anaerobic digestors, wastewater treatment plants) and natural systems (e.g., soils, freshwater, or marine environments). This chapter addresses key aspects of polymer biodegradability and biodegradation in both natural and engineered systems with the goal to advance a more holistic view on the topic and, thereby, provide guidance for all stakeholders working on developing, testing, and regulating biodegradable polymers. These aspects include definitions of biodegradability and biodegradation, elucidating polymer- and environmental factors that control the biodegradation process, a discussion of the analytical chemistry of polymer biodegradation, polymer biodegradability testing and certification, as well as a brief overview of research needs. In accordance with the diverse backgrounds of the authors of the chapter, this chapter targets all stakeholder groups from academics to industry and regulators.
Bibliographic Details
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know