Network Medicine-Based Unbiased Disease Modules for Drug and Diagnostic Target Identification in ROSopathies
Handbook of Experimental Pharmacology, ISSN: 1865-0325, Vol: 264, Page: 49-68
2021
- 6Citations
- 8Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations6
- Citation Indexes6
- CrossRef1
- Captures8
- Readers8
Book Chapter Description
Most diseases are defined by a symptom, not a mechanism. Consequently, therapies remain symptomatic. In reverse, many potential disease mechanisms remain in arbitrary search for clinical relevance. Reactive oxygen species (ROS) are such an example. It is an attractive hypothesis that dysregulation of ROS can become a disease trigger. Indeed, elevated ROS levels of various biomarkers have been correlated with almost every disease, yet after decades of research without any therapeutic application. We here present a first systematic, non-hypothesis-based approach to transform this field as a proof of concept for biomedical research in general. We selected as seed proteins 9 families with 42 members of clinically researched ROS-generating enzymes, ROS-metabolizing enzymes or ROS targets. Applying an unbiased network medicine approach, their first neighbours were connected, and, based on a stringent subnet participation degree (SPD) of 0.4, hub nodes excluded. This resulted in 12 distinct human interactome-based ROS signalling modules, while 8 proteins remaining unconnected. This ROSome is in sharp contrast to commonly used highly curated and integrated KEGG, HMDB or WikiPathways. These latter serve more as mind maps of possible ROS signalling events but may lack important interactions and often do not take different cellular and subcellular localization into account. Moreover, novel non-ROS-related proteins were part of these forming functional hybrids, such as the NOX5/sGC, NOX1,2/NOS2, NRF2/ENC-1 and MPO/SP-A modules. Thus, ROS sources are not interchangeable but associated with distinct disease processes or not at all. Module members represent leads for precision diagnostics to stratify patients with specific ROSopathies for precision intervention. The upper panel shows the classical approach to generate hypotheses for a role of ROS in a given disease by focusing on ROS levels and to some degree the ROS type or metabolite. Low levels are considered physiological; higher amounts are thought to cause a redox imbalance, oxidative stress and eventually disease. The source of ROS is less relevant; there is also ROS-induced ROS formation, i.e. by secondary sources (see upwards arrow). The non-hypothesis-based network medicine approach uses genetically or otherwise validated risk genes to construct disease-relevant signalling modules, which will contain also ROS targets. Not all ROS sources will be relevant for a given disease; some may not be disease relevant at all. The three examples show (from left to right) the disease-relevant appearance of an unphysiological ROS modifier/toxifier protein, ROS target or ROS source.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85102218928&origin=inward; http://dx.doi.org/10.1007/164_2020_386; http://www.ncbi.nlm.nih.gov/pubmed/32780286; http://link.springer.com/10.1007/164_2020_386; https://dx.doi.org/10.1007/164_2020_386; https://link.springer.com/chapter/10.1007/164_2020_386
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know