Role and Regulation of Lin28 in Progenitor Cells During Central Nervous System Development
Advances in Experimental Medicine and Biology, ISSN: 2214-8019, Vol: 1326, Page: 55-72
2021
- 1Citations
- 2Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Book Chapter Description
Lin28 is a highly conserved RNA binding protein that regulates stemness whose molecular role has been widely studied in vitro. However, the regulation and the molecular role of Lin28 during the development of the vertebrate central nervous system (CNS) in vivo are not completely understood. Here, the expression and the putative role of Lin28 in the development of the mammalian CNS are reviewed in the context of recent results showing the progressive cellular and molecular changes in neural progenitor cells. Downstream genes that may play a role during CNS development and the effect of misregulated expression of Lin28 are discussed. Evidence suggests that Lin28 promotes symmetric divisions over asymmetric divisions, increasing the number of progenitors during early neurogenesis. Future quantitative analysis of Lin28 isoforms levels and stabilities together with single cell transcriptomics data, cell cycle dynamics and cell fate analysis in Lin28 gain- and loss-of-function experiments will provide a better understanding of the molecular role of Lin28 during development.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85111996475&origin=inward; http://dx.doi.org/10.1007/5584_2020_607; http://www.ncbi.nlm.nih.gov/pubmed/33378003; https://link.springer.com/10.1007/5584_2020_607; https://dx.doi.org/10.1007/5584_2020_607; https://link.springer.com/chapter/10.1007/5584_2020_607
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know