PlumX Metrics
Embed PlumX Metrics

Electromagnetic singularities and resonances in near-field optical probes

Scanning Probe Microscopy, Vol: 2, Page: 254-279
2007
  • 3
    Citations
  • 0
    Usage
  • 9
    Captures
  • 0
    Mentions
  • 0
    Social Media
Metric Options:   Counts1 Year3 Year

Metrics Details

Book Chapter Description

Over the last two decades scanning near-field optical microscopy (SNOM) has demonstrated its ability to provide optical resolution significantly better than the diffraction limit (<20 nm). The general principle of SNOM relies on the approach of a nanometer-sized object in the optical near-field of a sample to be studied. This nano-object (NO) is usually the extremity of a probe. Regardless of the nature of the observed SNOM signal (inelastic scattering, fluorescence, etc.), the detection of the light is achieved in the far-field regime where the NO acts as a mediator between the optical near-field and the detector. Figure 1 is a schematic illustration of the SNOM principle. © 2007 Springer Science+Business Media, LLC.

Provide Feedback

Have ideas for a new metric? Would you like to see something else here?Let us know