P-Postlabeling analysis of DNA adducts
Methods in Molecular Biology, ISSN: 1940-6029, Vol: 2102, Page: 291-302
2020
- 7Citations
- 7Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations7
- Citation Indexes7
- Captures7
- Readers7
Book Chapter Description
P-Postlabeling analysis is an ultra-sensitive method for the detection of DNA adducts, such as those formed directly by the covalent binding of carcinogens and mutagens to bases in DNA, and other DNA lesions resulting from modification of bases by endogenous or exogenous agents (e.g., oxidative damage). The procedure involves four main steps: enzymatic digestion of DNA sample; enrichment of the adducts; radiolabeling of the adducts by T4 kinase-catalyzed transference of P-orthophosphate from [γ-P]ATP; chromatographic separation of labeled adducts, and detection and quantification by means of their radioactive decay. Using 10 μg of DNA or less, it is capable of detecting adduct levels as low as 1 adduct in 10–10 normal nucleotides. It is applicable to a wide range of investigations, including monitoring human exposure to environmental or occupational carcinogens, determining whether a chemical has genotoxic properties, analysis of the genotoxicity of complex mixtures, elucidation of the pathways of activation of carcinogens, and monitoring DNA repair.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85079413109&origin=inward; http://dx.doi.org/10.1007/978-1-0716-0223-2_16; http://www.ncbi.nlm.nih.gov/pubmed/31989562; http://link.springer.com/10.1007/978-1-0716-0223-2_16; https://dx.doi.org/10.1007/978-1-0716-0223-2_16; https://link.springer.com/protocol/10.1007/978-1-0716-0223-2_16
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know