Statistical Considerations on NGS Data for Inferring Copy Number Variations
Methods in Molecular Biology, ISSN: 1940-6029, Vol: 2243, Page: 27-58
2021
- 3Citations
- 3Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations3
- Citation Indexes3
- CrossRef3
- Captures3
- Readers3
Book Chapter Description
The next-generation sequencing (NGS) technology has revolutionized research in genetics and genomics, resulting in massive NGS data and opening more fronts to answer unresolved issues in genetics. NGS data are usually stored at three levels: image files, sequence tags, and alignment reads. The sizes of these types of data usually range from several hundreds of gigabytes to several terabytes. Biostatisticians and bioinformaticians are typically working with the aligned NGS read count data (hence the last level of NGS data) for data modeling and interpretation. To horn in on the use of NGS technology, researchers utilize it to profile the whole genome to study DNA copy number variations (CNVs) for an individual subject (or patient) as well as groups of subjects (or patients). The resulting aligned NGS read count data are then modeled by proper mathematical and statistical approaches so that the loci of CNVs can be accurately detected. In this book chapter, a summary of most popularly used statistical methods for detecting CNVs using NGS data is given. The goal is to provide readers with a comprehensive resource of available statistical approaches for inferring DNA copy number variations using NGS data.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85102079571&origin=inward; http://dx.doi.org/10.1007/978-1-0716-1103-6_2; http://www.ncbi.nlm.nih.gov/pubmed/33606251; http://link.springer.com/10.1007/978-1-0716-1103-6_2; https://dx.doi.org/10.1007/978-1-0716-1103-6_2; https://link.springer.com/protocol/10.1007/978-1-0716-1103-6_2
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know