Arresting Spliceosome Intermediates at Various Stages of the Splicing Pathway
Methods in Molecular Biology, ISSN: 1940-6029, Vol: 2666, Page: 193-211
2023
- 1Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Captures1
- Readers1
Book Chapter Description
The spliceosome is a dynamic ribonucleoprotein particle and is assembled via sequential binding of five snRNAs and numerous protein factors. To understand the molecular mechanism of the splicing reaction, it is necessary to dissect the spliceosome pathway and isolate spliceosome intermediates in various stages of the pathway for biochemical and structural analysis. Here, we describe protocols for preparing intron-containing transcripts, cell-free splicing extracts, and in vitro splicing reactions, as well as procedures to arrest the spliceosome at different stages of the pathway for characterization of specific splicing complexes from the budding yeast Saccharomyces cerevisiae. Methods for arresting spliceosomes at specific stages include depletion with antibodies against factors required for specific steps of the pathway, use of extracts prepared from temperature-sensitive mutants, use of dominant negative mutants of DExD/H-box proteins, and use of mutant substrates.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85159425475&origin=inward; http://dx.doi.org/10.1007/978-1-0716-3191-1_15; http://www.ncbi.nlm.nih.gov/pubmed/37166667; https://link.springer.com/10.1007/978-1-0716-3191-1_15; https://dx.doi.org/10.1007/978-1-0716-3191-1_15; https://link.springer.com/protocol/10.1007/978-1-0716-3191-1_15
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know