Reverse Vaccinology for Influenza A Virus: From Genome Sequencing to Vaccine Design
Methods in Molecular Biology, ISSN: 1940-6029, Vol: 2673, Page: 401-410
2023
- 2Citations
- 5Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations2
- Citation Indexes2
- CrossRef1
- Captures5
- Readers5
Book Chapter Description
Reverse vaccinology (RV) consists in the identification of potentially protective antigens expressed by any organism starting from genomic information and derived from in silico analysis, with the aim of promoting the discovery of new candidate vaccines against different types of pathogens. This approach makes use of bioinformatics techniques to screen the whole genomic sequence of a specific pathogen for the identification of the epitopes that could elicit the best immune response. The use of in silico techniques allows to reduce dramatically both the time and cost required for the identification of a potential vaccine, also facilitating the laborious process of selection of those antigens that, with a traditional approach, would be completely impossible to detect or culture. RV methodologies have been successfully applied for the identification of new vaccines against serogroup B meningococcus (MenB), Bacillus anthracis, Streptococcus pneumonia, Staphylococcus aureus, Chlamydia pneumoniae, Porphyromonas gingivalis, Edwardsiella tarda, and Mycobacterium tuberculosis. As a case of study, we will go in depth into the application of RV techniques on Influenza A virus.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85160710902&origin=inward; http://dx.doi.org/10.1007/978-1-0716-3239-0_27; http://www.ncbi.nlm.nih.gov/pubmed/37258929; https://link.springer.com/10.1007/978-1-0716-3239-0_27; https://dx.doi.org/10.1007/978-1-0716-3239-0_27; https://link.springer.com/protocol/10.1007/978-1-0716-3239-0_27
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know