Assessing the ATP Binding Ability of NLRP3 from Cell Lysates by a Pull-down Assay
Methods in Molecular Biology, ISSN: 1940-6029, Vol: 2696, Page: 257-267
2023
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Book Chapter Description
NACHT-, LRR-, and PYD-containing protein 3 (NLRP3) is a member of AAA+ ATPase family that upon activation forms inflammasomes. Several studies demonstrated that ATP binding and hydrolysis are important for NLRP3 function as an inflammasome sensor. Furthermore, compounds targeting ATP binding motifs and interfering with ATPase activity of NLRP3 inhibit NLRP3 inflammasome formation. Measuring ATPase activity of proteins and binding of radiolabeled ATP to specified proteins are well-established methods that require purified protein. Here, we describe a method for assessing NLRP3 binding to ATP using ATP-conjugated beads and lysates of cells that either express endogenous NLRP3 or are transfected with plasmids encoding NLRP3. Efficiency of binding is followed after elution from the beads and detection with Western blot and immunolabelling. The method can be used to evaluate the functionality of NLRP3 variants or to check whether compounds or NLRP3 binding partners interfere with binding of ATP.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85168064410&origin=inward; http://dx.doi.org/10.1007/978-1-0716-3350-2_17; http://www.ncbi.nlm.nih.gov/pubmed/37578728; https://link.springer.com/10.1007/978-1-0716-3350-2_17; https://dx.doi.org/10.1007/978-1-0716-3350-2_17; https://link.springer.com/protocol/10.1007/978-1-0716-3350-2_17
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know