Reagent Tracker Platform Verifies and Provides Audit Trails for the Error-Free Implementation of T-Cell ImmunoSpot Assays
Methods in Molecular Biology, ISSN: 1940-6029, Vol: 2768, Page: 105-115
2024
- 1Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Captures1
- Readers1
Book Chapter Description
ELISPOT and FluoroSpot assays, collectively called ImmunoSpot assays, permit to reliable detection of rare antigen-specific T cells in freshly isolated cell material, such as peripheral blood mononuclear cells (PBMC). Establishing their frequency within all PBMC permits to assess the magnitude of antigen-specific T-cell immunity; the simultaneous measurement of their cytokine signatures reveals these T-cells’ lineage and effector functions, that is, the quality of T-cell-mediated immunity. Because of their unparalleled sensitivity, ease of implementation, robustness, and frugality in PBMC utilization, T-cell ImmunoSpot assays are increasingly becoming part of the standard immune monitoring repertoire. For regulated workflows, stringent audit trails of the data generated are a requirement. While this has been fully accomplished for the analysis of T-cell ImmunoSpot assay results, such are missing for the wet laboratory implementation of the actual test performed. Here we introduce a solution for enhancing and verifying the error-free implementation of T-cell ImmunoSpot assays.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85188760735&origin=inward; http://dx.doi.org/10.1007/978-1-0716-3690-9_7; http://www.ncbi.nlm.nih.gov/pubmed/38502390; https://link.springer.com/10.1007/978-1-0716-3690-9_7; https://dx.doi.org/10.1007/978-1-0716-3690-9_7; https://link.springer.com/protocol/10.1007/978-1-0716-3690-9_7
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know