PlumX Metrics
Embed PlumX Metrics

Assessment of Protein–Protein Docking Models Using Deep Learning

Methods in Molecular Biology, ISSN: 1940-6029, Vol: 2780, Page: 149-162
2024
  • 0
    Citations
  • 0
    Usage
  • 3
    Captures
  • 0
    Mentions
  • 0
    Social Media
Metric Options:   Counts1 Year3 Year

Metrics Details

Book Chapter Description

Protein–protein interactions are involved in almost all processes in a living cell and determine the biological functions of proteins. To obtain mechanistic understandings of protein–protein interactions, the tertiary structures of protein complexes have been determined by biophysical experimental methods, such as X-ray crystallography and cryogenic electron microscopy. However, as experimental methods are costly in resources, many computational methods have been developed that model protein complex structures. One of the difficulties in computational protein complex modeling (protein docking) is to select the most accurate models among many models that are usually generated by a docking method. This article reviews advances in protein docking model assessment methods, focusing on recent developments that apply deep learning to several network architectures.

Provide Feedback

Have ideas for a new metric? Would you like to see something else here?Let us know