Cell-generated forces in tissue assembly, function, and disease
Mechanobiology of Cell-Cell and Cell-Matrix Interactions, Page: 47-74
2011
- 3Citations
- 16Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Book Chapter Description
While the cell and tissue-level effects of exogenous, physiological forces like shear stress and pressure are well-documented, the effects of endogenous cell-generated forces and the mechanics of the microenvironment have only recently gained significant attention. There is now mounting evidence that cells generate contractile forces that can elicit changes in the balance between cell-cell cohesion and cell-matrix adhesion within tissues. This balance is critical in governing tissue structure, formation and health. These cell-generated traction forces are altered by changes in the mechanics of the cellular microenvironment. Notably, changes in tissue stiffness accompany both the progression of many diseases including atherosclerosis, heart disease and cancer, and in normal physiological processes including development. Recent evidence suggests that the mechanics of the microenvironment may play a role in dictating cell function and tissue structure. Additionally, abnormal changes in tissue stiffness may promote disease progression. This chapter will discuss the role of cell-mediated forces and the mechanics of the microenvironment in the assembly and maintenance of cells into tissues. Recent advances in tools, techniques, and materials used to study cellular forces and the effects of matrix mechanics will be described. Additionally, the role of cellular traction forces and matrix mechanics in both normal and diseased states will be described, using examples primarily from the cardiovascular system to illustrate the relationship between mechanics and cell and tissue function. © Springer Science+Business Media, LLC 2011.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=84894966016&origin=inward; http://dx.doi.org/10.1007/978-1-4419-8083-0_4; https://link.springer.com/10.1007/978-1-4419-8083-0_4; http://www.springerlink.com/index/10.1007/978-1-4419-8083-0_4; http://www.springerlink.com/index/pdf/10.1007/978-1-4419-8083-0_4; https://dx.doi.org/10.1007/978-1-4419-8083-0_4; https://link.springer.com/chapter/10.1007/978-1-4419-8083-0_4
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know