Three dimensional ultrasound analysis of fascicle orientation in human tibialis anterior muscle enables analysis of macroscopic torque at the cellular level
Advances in Experimental Medicine and Biology, ISSN: 0065-2598, Vol: 538, Page: 635-645
2004
- 13Citations
- 32Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations13
- Citation Indexes13
- 13
- CrossRef9
- Captures32
- Readers32
- 32
Conference Paper Description
The purpose of this study was to test the hypothesis that the internal structure of the bipennate human tibialis anterior muscle is sufficiently homogenous throughout the muscle that the cellular stresses could be interpreted correctly from measurable anatomic properties and torque in the limb. This result is needed for facile comparison of extrinsic mechanical data and intrinsic energetic fluxes. Three-dimensional imaging of the fascicles of the human tibialis anterior muscle was made by capturing a series of ultrasound images while registering their location in space. Subsequent tracing of hundreds of structures in the ultrasound images with the use of custom software identified muscle boundaries, tendon surfaces, and fascicles as anatomic elements in 3-D space. The tendon was reconstructed as a mesh through the tracings identified as a component of the tendon. The angle of insertion of each identified fascicle at the tendon was calculated against the nearest normal in the mesh of the tendon. In three subjects the average angle of insertion of the fascicles onto the internal tendon was 11° (coefficient of variation 40%). The angle decreased along the length of the muscle from ∼ 15° near the belly of the muscle to 6° near the ankle in fascicles superior and inferior to the central tendon. The angle increased by several degrees during a voluntary contraction. Despite the differences in angles of insertion that can be measured, these distinctions have little significance for the distribution of forces along cellular axes within the muscle: the angles, their distribution within the muscle and change with contraction are small. For this bipennate muscle the cosine of the angle of insertion of the cellular bundles is always close to unity. Thus measurements of whole muscle mechanical data are simply related to mechanical stress of its cells.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=1842483287&origin=inward; http://www.ncbi.nlm.nih.gov/pubmed/15098705; http://dx.doi.org/10.1007/978-1-4419-9029-7_56; http://link.springer.com/10.1007/978-1-4419-9029-7_56; http://www.springerlink.com/index/10.1007/978-1-4419-9029-7_56; http://www.springerlink.com/index/pdf/10.1007/978-1-4419-9029-7_56
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know