Animal models of SAH and their translation to clinical SAH
Translational Stroke Research: From Target Selection to Clinical Trials, Page: 595-613
2012
- 1Citations
- 3Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Book Chapter Description
Animal models of stroke may be useful for elucidating mechanisms of disease, but they have arguably not been particularly successful at predicting what treatments will be successful for ischemic stroke in humans. Animal models of subarachnoid hemorrhage also have been developed in rodents, dogs, and nonhuman primates. These models mimic angiographic vasospasm and some aspects of subarachnoid hemorrhage such as the transient global ischemia that sometimes occurs at the time of rupture of an aneurysm. Since the detailed acute and delayed pathologic effects of subarachnoid hemorrhage on human brain are not well delineated, how the animal models replicate this is unknown. Nevertheless, meta-analysis of the literature suggests that clinical trials of drugs for angiographic vasospasm in humans have been effective, and that some animal models accurately reflect what the effects of drugs are in humans. Analysis of animal models and comparison of drug effects on angiographic vasospasm in humans and animals suggest injection of autologous blood into the basal cisterns; assessment of vasospasm more than 3 days after the injection and intrathecal delivery of drugs may be better ways to study drugs in animals, in terms of translation to success in humans.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85027366289&origin=inward; http://dx.doi.org/10.1007/978-1-4419-9530-8_29; https://link.springer.com/10.1007/978-1-4419-9530-8_29; http://www.springerlink.com/index/10.1007/978-1-4419-9530-8_29; http://www.springerlink.com/index/pdf/10.1007/978-1-4419-9530-8_29; https://dx.doi.org/10.1007/978-1-4419-9530-8_29; https://link.springer.com/chapter/10.1007/978-1-4419-9530-8_29
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know