Theoretical study of Oxygen reduction reaction catalysts: From Pt to non-precious metal catalysts
Lecture Notes in Energy, ISSN: 2195-1284, Vol: 9, Page: 339-373
2013
- 4Citations
- 4Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Book Chapter Description
Fuel cells are regarded as one of the most promising candidates for stationary and mobile power generation due to their high energy yield and low environmental impact of hydrogen oxidation. The oxygen reduction reaction (ORR) at cathode is a very complex process and plays a crucial role during operation of the PEM fuel cells. However, its mechanism and the nature of intermediates involved remain vague. This chapter focuses on the recent theoretical modeling studies of ORR catalysts for PEMFC. Recent theoretical investigations on oxygen reduction electrocatalysts, such as Pt-based catalysts, non-Pt metal catalysts (Pd, Ir, CuCl), and non-precious metal catalysts (transitional metal macrocyclic complexes, conductive polymer materials, and carbon-based materials), are reviewed. The oxygen reduction mechanisms catalyzed by these catalysts are discussed based on the results. © Springer-Verlag London 2013.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=84882950496&origin=inward; http://dx.doi.org/10.1007/978-1-4471-4911-8_11; https://link.springer.com/10.1007/978-1-4471-4911-8_11; https://dx.doi.org/10.1007/978-1-4471-4911-8_11; https://link.springer.com/chapter/10.1007/978-1-4471-4911-8_11
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know