Foodborne toxins of marine origin: ciguatera
Reviews of Environmental Contamination and Toxicology, ISSN: 0179-5953, Vol: 117, Page: 51-94
1991
- 59Citations
- 30Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations59
- Citation Indexes56
- 56
- CrossRef25
- Policy Citations3
- 3
- Captures30
- Readers30
- 30
Book Chapter Description
Ciguatera poisoning has long been recognized as a serious problem in the tropical and subtropical regions of the world. Due to international and interstate commerce and tourist travel the phenomenon is spreading to other parts of the globe. Various species of fish (surgeonfish, snapper, grouper, barracuda, jack, amberjack among others) have been implicated in this type of poisoning. These fish accumulate toxins in their flesh and viscera through the consumption of smaller fish that have been previously contaminated by feeding on toxic dinoflagellates. The most probable source of ciguatera is thought to be the benthic microorganism, Gambierdiscus toxicus, which produces both CTX and MTX, but other species of dinoflagellates such as Prorocentrum lima may also contribute with secondary toxins associated with the disease. Potentially ciguatoxic dinoflagellates have been isolated, cultured under laboratory conditions and dinoflagellate growth requirements as well as some factors affecting toxin production have been determined. Also, data from their ecological environment have been accumulated in an attempt to reveal a relationship with the epidemiology of ciguatera outbreaks. Several bioassays have been employed to determine the ciguatoxicity of fish. Cats have been used due to their sensitivity, but regurgitation has made dosage information difficult to obtain. Mongooses have also been used but they often carry parasitic and other type of diseases which complicate the bioassay. Mice have been used more commonly; they offer a more reliable model, can be easily housed, readily are dosed in several ways, and manifest diverse symptoms similar to human intoxications; but the amount of toxic extract needed, time consumed, complicated extraction techniques, and instrumentation involved limit the use of this assay commercially. Other bioassays have been explored including the brine shrimp, chicken, mosquito, crayfish nerve cord, guinea pig ileum, guinea pig atrium, and other histological preparations. All require elaborate time-consuming procedures, are not reproducible, lack specificity, and are semiquantitative at best. The techniques that appear to represent the major advance in identifying and detecting ciguatoxic fish are immunochemical methods: radioimmunoassay (RIA), competitive enzyme immunoassay (EIA), and enzyme-linked immunosorbent assay (ELISA). Of these, the enzyme immunoassay stick test is the simplest, fastest, most specific, more sensitive, and does not require complicated instrumentation.(ABSTRACT TRUNCATED AT 400 WORDS)
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=0026053285&origin=inward; http://dx.doi.org/10.1007/978-1-4612-3054-0_2; http://www.ncbi.nlm.nih.gov/pubmed/1994459; http://link.springer.com/10.1007/978-1-4612-3054-0_2; https://dx.doi.org/10.1007/978-1-4612-3054-0_2; https://link.springer.com/chapter/10.1007/978-1-4612-3054-0_2; http://www.springerlink.com/index/10.1007/978-1-4612-3054-0_2; http://www.springerlink.com/index/pdf/10.1007/978-1-4612-3054-0_2
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know