PlumX Metrics
Embed PlumX Metrics

Engineering optimization and industrial applications

Surrogate-Based Modeling and Optimization: Applications in Engineering, Vol: 9781461475514, Page: 393-412
2014
  • 5
    Citations
  • 0
    Usage
  • 4
    Captures
  • 0
    Mentions
  • 0
    Social Media
Metric Options:   Counts1 Year3 Year

Metrics Details

Book Chapter Description

Design optimization is important in engineering and industrial applications. It is usually very challenging to find optimum designs, which require both efficient optimization algorithms and high-quality simulators that are often time-consuming. To some extent, an optimization process is equivalent to a self-organizing system, and the organized states are the optima that are to be searched for. In this chapter, we discuss both optimization and self-organization in a unified framework, and we use three metaheuristic algorithms, the firefly algorithm, the bat algorithm and cuckoo search, as examples to see how this self-organized process works. We then present a set of nine design problems in engineering and industry. We also discuss the challenging issues that need to be addressed in the near future.

Provide Feedback

Have ideas for a new metric? Would you like to see something else here?Let us know