Engineering optimization and industrial applications
Surrogate-Based Modeling and Optimization: Applications in Engineering, Vol: 9781461475514, Page: 393-412
2014
- 5Citations
- 4Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Book Chapter Description
Design optimization is important in engineering and industrial applications. It is usually very challenging to find optimum designs, which require both efficient optimization algorithms and high-quality simulators that are often time-consuming. To some extent, an optimization process is equivalent to a self-organizing system, and the organized states are the optima that are to be searched for. In this chapter, we discuss both optimization and self-organization in a unified framework, and we use three metaheuristic algorithms, the firefly algorithm, the bat algorithm and cuckoo search, as examples to see how this self-organized process works. We then present a set of nine design problems in engineering and industry. We also discuss the challenging issues that need to be addressed in the near future.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=84929536409&origin=inward; http://dx.doi.org/10.1007/978-1-4614-7551-4_16; https://link.springer.com/10.1007/978-1-4614-7551-4_16; https://dx.doi.org/10.1007/978-1-4614-7551-4_16; https://link.springer.com/chapter/10.1007/978-1-4614-7551-4_16
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know