Food preservation by nanostructures-water interactions control
Food Engineering Series, ISSN: 1571-0297, Page: 15-25
2015
- 6Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Captures6
- Readers6
Book Chapter Description
Understanding structure–function properties in food systems has led to possibilities of food preservation by managing product structural features so that water and nutriments are subjected to various levels of physical immobilization, thus reducing reactivity and allowing a better control of product stability. In this chapter it is noted that to achieve this, it is necessary to induce in the solid matrix of the product the formation of micro–nano cavities, fissures, and pores into which water and other substances will strongly (and tightly) bound. Important thermodynamic characteristics of the system control this reduction in mobility and entropy control of food matrix-liquid is aimed to achieve the task. Also, principles and practical applications of such processes are discussed as well as structural features-appraisal methodologies.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85060578995&origin=inward; http://dx.doi.org/10.1007/978-1-4939-2578-0_2; https://link.springer.com/10.1007/978-1-4939-2578-0_2; https://dx.doi.org/10.1007/978-1-4939-2578-0_2; https://link.springer.com/chapter/10.1007/978-1-4939-2578-0_2
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know