Ex Vivo Transposon-Mediated Genetic Screens for Cancer Gene Discovery
Methods in Molecular Biology, ISSN: 1940-6029, Vol: 1907, Page: 145-157
2019
- 2Citations
- 6Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations2
- Citation Indexes2
- Captures6
- Readers6
Book Chapter Description
Transposon mutagenesis has emerged as a powerful methodology for functionally annotating cancer genomes. Although in vivo transposon-mediated forward genetic screens have proven to be valuable for cancer gene identification, they are also time consuming and resource intensive. To facilitate the rapid and cost-effective identification of genes that regulate tumor-promoting pathways, we developed a complementary ex vivo transposon mutagenesis approach wherein human or mouse cells growing in culture are mutagenized and screened for the acquisition of specific phenotypes in vitro or in vivo, such as growth factor independence or tumor-forming ability. This approach allows discovery of both gain- and loss-of-function mutations in the same screen. Transposon insertions sites are recovered by high-throughput sequencing. We recently applied this system to comprehensively identify and validate genes that promote growth factor independence and transformation of murine Ba/F3 cells. Here we describe a method for performing ex vivo Sleeping Beauty-mediated mutagenesis screens in these cells, which may be adapted for the acquisition of many different phenotypes in distinct cell types.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85058611131&origin=inward; http://dx.doi.org/10.1007/978-1-4939-8967-6_12; http://www.ncbi.nlm.nih.gov/pubmed/30542998; http://link.springer.com/10.1007/978-1-4939-8967-6_12; https://dx.doi.org/10.1007/978-1-4939-8967-6_12; https://link.springer.com/protocol/10.1007/978-1-4939-8967-6_12
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know