Tubulin tyrosine ligase-mediated modification of proteins
Methods in Molecular Biology, ISSN: 1940-6029, Vol: 2012, Page: 327-355
2019
- 7Citations
- 13Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations7
- Citation Indexes7
- CrossRef2
- Captures13
- Readers13
- 13
Book Chapter Description
Tubulin tyrosine ligase (TTL) catalyzes the addition of tyrosine derivatives to the C-terminal carboxylic acid of proteins. The enzyme binds to a 14-amino acid recognition sequence, termed Tub-tag, and allows for the introduction of tyrosine derivatives that carry a unique chemical handle. These handles enable subsequent bioorthogonal reactions with a great variety of probes or effector molecules. Clearly, this two-step chemoenzymatic approach, facilitates the site-specific functionalization of proteins. Furthermore, due to its broad substrate tolerance, tubulin tyrosine ligase also enables an enzymatic one-step modification. For example, a coumarin amino acid was utilized to generate fluorescently labeled proteins for advanced applications in imaging and diagnostics. Here we describe the modification of proteins using TTL in detail via a one-step as well as two-step procedure and highlight its practicability for applications in imaging, diagnostics, and cell biology.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85066801714&origin=inward; http://dx.doi.org/10.1007/978-1-4939-9546-2_17; http://www.ncbi.nlm.nih.gov/pubmed/31161516; https://link.springer.com/10.1007/978-1-4939-9546-2_17; https://dx.doi.org/10.1007/978-1-4939-9546-2_17; https://link.springer.com/protocol/10.1007/978-1-4939-9546-2_17
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know