Evaluation of the Abundance of Fungi in Wastewater Treatment Plants Using Quantitative PCR (qPCR)
Methods in molecular biology (Clifton, N.J.), ISSN: 1940-6029, Vol: 2065, Page: 79-94
2020
- 5Citations
- 23Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations5
- Citation Indexes5
- CrossRef4
- Captures23
- Readers23
- 23
Book Chapter Description
Assessment of the abundance of fungi in environmental samples by quantitative PCR (qPCR) of community DNA is often a difficult task due to biases introduced during PCR amplification, resulting from the differences associated with length polymorphism and the varying number of copies of the rRNA operon among fungal species, the lack of specificity of the primers targeting the different regions of the rRNA operon, or their insufficient coverage of the fungal lineages. To overcome those limitations, it is crucial to test and select the specific primers sets which provide the more accurate approximation to the quantification of the targeted fungal populations in a given set of samples. Fungi are a significant fraction of the microbiota in wastewater treatment plants (WWTPs), but the activated sludge microbial communities comprise many other eukaryotic microorganisms whose molecular markers are often coamplified by primers initially designed as fungal-specific. Here, the use of the FungiQuant primer set is recommended for the quantification of fungal molecular markers (18S rRNA genes) by qPCR in activated sludge samples and the full protocol is described.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85072918188&origin=inward; http://dx.doi.org/10.1007/978-1-4939-9833-3_7; http://www.ncbi.nlm.nih.gov/pubmed/31578689; http://link.springer.com/10.1007/978-1-4939-9833-3_7; https://dx.doi.org/10.1007/978-1-4939-9833-3_7; https://link.springer.com/protocol/10.1007/978-1-4939-9833-3_7
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know