Enabling biomedical research with designer quantum dots
Methods in Molecular Biology, ISSN: 1064-3745, Vol: 811, Page: 245-265
2012
- 10Citations
- 11Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations10
- Citation Indexes10
- 10
- CrossRef7
- Captures11
- Readers11
- 11
Book Chapter Description
Quantum Dots (QDs) are a new class of semiconductor nanoparticulate luminophores, which are actively researched for novel applications in biology and nanomedicine. In this review, the recent progress in the design and applications of QD labels for in vitro and in vivo imaging of cells is presented. Surface chemical engineering of hydrophobic QDs is required to render them water soluble and biocompatible. Further surface modification and attachment of bioactive molecules to the surface of QDs, such as peptides, aptamers, or antibodies are intensively explored for targeted imaging of living cells, and disease states in animals. Specially designed surface coatings can drastically decrease nonspecific interactions between QDs and cells, minimize degradation of QDs under in vivo physiological conditions, reduce the cytotoxicity of QDs, and prolong circulation lifetimes in animals. New generations of QD probes are also promising for imaging cellular processes at the single-molecule level. Ultimately, QDs as components of complex therapeutic nanosystems are poised to contribute significantly to the field of personalized medicine. © 2012 Springer Science+Business Media, LLC.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=82355161902&origin=inward; http://dx.doi.org/10.1007/978-1-61779-388-2_16; http://www.ncbi.nlm.nih.gov/pubmed/22042684; https://link.springer.com/10.1007/978-1-61779-388-2_16; https://dx.doi.org/10.1007/978-1-61779-388-2_16; https://link.springer.com/protocol/10.1007/978-1-61779-388-2_16; http://www.springerlink.com/index/10.1007/978-1-61779-388-2_16; http://www.springerlink.com/index/pdf/10.1007/978-1-61779-388-2_16
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know