Epigenetic techniques in pharmacogenetics
Methods in Molecular Biology, ISSN: 1064-3745, Vol: 1015, Page: 179-188
2013
- 1Citations
- 11Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations1
- Citation Indexes1
- CrossRef1
- Captures11
- Readers11
- 11
Book Chapter Description
Pharmacoepigenetics is an emerging field, which can be studied by several approaches. Addressing DNA methylation status of drug-metabolizing enzymes and transporters (DMET) is challenging and might provide answers in relation to interindividual differences in pharmacokinetics and pharmacodynamics. Studying genetic variation in DMET genes in relation to drug response has been the main focus of pharmacogenetics laboratories; it is, however, expected that epigenetic modifications will play a role in drug responses as well. Some of the variations in drug-responses cannot be explained by genetic variation in DMET genes. For those particular genes it might be interesting to examine the DNA methylation status in relation to pharmacokinetics. In this chapter we discuss the methods available and provide a protocol to quantify DNA methylation status of CpG sites in candidate genes, which can readily be applied to most pharmacogenetics laboratories. In addition, we provide details about optimization and validation of the method in terms of technical specificity and technical sensitivity and precision of the method. © Springer Science+Business Media, LLC 2013.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=84880366008&origin=inward; http://dx.doi.org/10.1007/978-1-62703-435-7_11; http://www.ncbi.nlm.nih.gov/pubmed/23824856; https://link.springer.com/10.1007/978-1-62703-435-7_11; https://dx.doi.org/10.1007/978-1-62703-435-7_11; https://link.springer.com/protocol/10.1007/978-1-62703-435-7_11
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know