Perspective tools for optogenetics and photopharmacology: From design to implementation
Springer Series in Chemical Physics, ISSN: 0172-6218, Vol: 119, Page: 139-172
2019
- 9Citations
- 16Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Book Chapter Description
Optogenetics and photopharmacology are two perspective modern methodologies for control and monitoring of biological processes from an isolated cell to complex cell assemblies and organisms. Both methodologies use optically active components that being introduced into the cells of interest allow for optical control or monitoring of different cellular processes. In optogenetics, genetic materials are introduced into the cells to express light-sensitive proteins or protein constructs. In photopharmacology, photochromic compounds are delivered into a cell directly but not produced inside the cell from a genetic material. The development of both optogenetics and photopharmacology is inseparable from the design of improved tools (protein constructs or organic molecules) optimized for specific applications. Herein, we review the main tools that are used in modern optogenetics and photopharmaclogy and describe the types of cellular processes that can be controlled by these tools. Although a large number of different kinds of optogenetic tools exist, their performance can be evaluated with a limited number of metrics that have to be optimized for specific applications. We classify these metrics and describe the ways of their improvement.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85061060547&origin=inward; http://dx.doi.org/10.1007/978-3-030-05974-3_8; http://link.springer.com/10.1007/978-3-030-05974-3_8; http://link.springer.com/content/pdf/10.1007/978-3-030-05974-3_8; https://dx.doi.org/10.1007/978-3-030-05974-3_8; https://link.springer.com/chapter/10.1007/978-3-030-05974-3_8
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know