Holographic 3D visualisation of medical scan images
Lasers in Oral and Maxillofacial Surgery, Page: 209-226
2020
- 2Citations
- 5Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Book Chapter Description
Following decades of research and development, three-dimensional (3D) holographic visualisation and display technologies are ready to emerge. A 3D image can be described in terms of capturing the light field of a scene, which can be recreated by a surface that emits rays of light as a function of both intensity and direction. This may be realised via integral imaging or holography or a combination of these. Holographic technology relies on lasers to create diffractive interference patterns that enable encoding of amplitude and phase information within an optical medium. This is in the form of transmission or reflection holograms that act as gratings to deflect light. Suitable illumination of these patterns can form a 3D representation of an object in free space. Printed digital reflection holograms with static 3D images are now sufficiently mature for the depiction of volumetric data from computed tomography, magnetic resonance imaging or ultrasound scans. The physiology of 3D visual image perception is introduced along with tangible benefits of 3D visualisation. Image processing and computer graphics techniques for medical scans are summarised. Next-generation holographic video displays for dynamic visualisation are on the horizon, which are also being designed for medical imaging modalities. Case studies are also presented in facial forensics and surgical planning.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85087690532&origin=inward; http://dx.doi.org/10.1007/978-3-030-29604-9_16; http://link.springer.com/10.1007/978-3-030-29604-9_16; https://dx.doi.org/10.1007/978-3-030-29604-9_16; https://link.springer.com/chapter/10.1007/978-3-030-29604-9_16
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know