Dynamic Failure of Pure Tungsten Carbide Under Simultaneous Compression and Shear Plate Impact Loading
Conference Proceedings of the Society for Experimental Mechanics Series, ISSN: 2191-5652, Page: 163-170
2020
- 4Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Captures4
- Readers4
Conference Paper Description
In this paper, we present the results from a series of plate impact experiments designed to study dynamic response of commercial 99.6% purity tungsten carbide (WC) under simultaneous compression-and-shear stress wave loading. The symmetric oblique plate-impact experiments are conducted using progressively increasing angles of inclination (5°, 10°, and 22°). The longitudinal and transverse components of the measured particle velocity history at the free surface of the target plate in experiments with inclination angles of up to 10° and impact velocities ~100 m/s coincide well with their corresponding elastic particle velocity predictions. However, the normal particle velocity profiles for experiments conducted at an oblique impact angle of 22° are markedly different and exhibit a sudden increase in particle velocity from their plateau levels reminiscent of failure waves observed by other investigators in soda lime glass and silicon carbide (SIC-B). The increase in normal particle velocity (recompression/re-acceleration signal) in the shocked state of the target and the relatively large undulations present in the measured transverse particle velocity profiles are indicative of heterogeneous dynamic brittle failure processes in WC under the simple-shear state of stress, and are used to provide estimates for the critical range of pure-shear (tensile) loading that can initiate catastrophic failure in pure WC.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85077766941&origin=inward; http://dx.doi.org/10.1007/978-3-030-30021-0_28; http://link.springer.com/10.1007/978-3-030-30021-0_28; http://link.springer.com/content/pdf/10.1007/978-3-030-30021-0_28; https://dx.doi.org/10.1007/978-3-030-30021-0_28; https://link.springer.com/chapter/10.1007/978-3-030-30021-0_28
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know