PlumX Metrics
Embed PlumX Metrics

A Preliminary Study on Symbolic Fuzzy Cognitive Maps for Pattern Classification

Communications in Computer and Information Science, ISSN: 1865-0937, Vol: 1052, Page: 285-295
2019
  • 1
    Citations
  • 0
    Usage
  • 4
    Captures
  • 0
    Mentions
  • 0
    Social Media
Metric Options:   Counts1 Year3 Year

Metrics Details

Conference Paper Description

Within the neural computing field, Fuzzy Cognitive Maps (FCMs) are attractive simulation tools to model dynamic systems by means of well-defined neural concepts and causal relationships, thus equipping the network with interpretability features. However, such components are normally described by quantitative terms, which may be difficult to handle by experts. Recently, we proposed a symbolic FCM scheme (termed FCM-TFN) in which both weights and activation values are described by triangular fuzzy numbers. In spite of the promising results, the model’s performance in solving prediction problems remains uncertain. In this paper, we explore the prediction capabilities of the FCM-TFN model in pattern classification and concluded that our method is able to perform well when compared with traditional classifiers.

Provide Feedback

Have ideas for a new metric? Would you like to see something else here?Let us know